\(\int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx\) [107]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 347 \[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\frac {b x^{3/2} \left (a+b x^2+c x^4\right )}{3 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {a x+b x^3+c x^5}}+\frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}-\frac {\sqrt [4]{a} b \sqrt {x} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 c^{3/4} \sqrt {a x+b x^3+c x^5}}+\frac {\sqrt [4]{a} \left (b+2 \sqrt {a} \sqrt {c}\right ) \sqrt {x} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 c^{3/4} \sqrt {a x+b x^3+c x^5}} \]

[Out]

1/3*b*x^(3/2)*(c*x^4+b*x^2+a)/c^(1/2)/(a^(1/2)+x^2*c^(1/2))/(c*x^5+b*x^3+a*x)^(1/2)+1/3*x^(1/2)*(c*x^5+b*x^3+a
*x)^(1/2)-1/3*a^(1/4)*b*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(
sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*x^(1/2)*((c*x^4+b*x^2+
a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^5+b*x^3+a*x)^(1/2)+1/6*a^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4))
)^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2
))^(1/2))*(a^(1/2)+x^2*c^(1/2))*(b+2*a^(1/2)*c^(1/2))*x^(1/2)*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/
c^(3/4)/(c*x^5+b*x^3+a*x)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1935, 1967, 1211, 1117, 1209} \[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\frac {\sqrt [4]{a} \sqrt {x} \left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 c^{3/4} \sqrt {a x+b x^3+c x^5}}-\frac {\sqrt [4]{a} b \sqrt {x} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 c^{3/4} \sqrt {a x+b x^3+c x^5}}+\frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}+\frac {b x^{3/2} \left (a+b x^2+c x^4\right )}{3 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {a x+b x^3+c x^5}} \]

[In]

Int[Sqrt[a*x + b*x^3 + c*x^5]/Sqrt[x],x]

[Out]

(b*x^(3/2)*(a + b*x^2 + c*x^4))/(3*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[a*x + b*x^3 + c*x^5]) + (Sqrt[x]*Sqrt[
a*x + b*x^3 + c*x^5])/3 - (a^(1/4)*b*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[
c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(3*c^(3/4)*Sqrt[a*x + b*x^3
+ c*x^5]) + (a^(1/4)*(b + 2*Sqrt[a]*Sqrt[c])*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a]
 + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(6*c^(3/4)*Sqrt[a*x
+ b*x^3 + c*x^5])

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1935

Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a*
x^q + b*x^n + c*x^(2*n - q))^p/(m + p*(2*n - q) + 1)), x] + Dist[(n - q)*(p/(m + p*(2*n - q) + 1)), Int[x^(m +
 q)*(2*a + b*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n -
 q] && PosQ[n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && Gt
Q[m + p*q + 1, -(n - q)] && NeQ[m + p*(2*n - q) + 1, 0]

Rule 1967

Int[((x_)^(m_.)*((A_) + (B_.)*(x_)^(j_.)))/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Sym
bol] :> Dist[x^(q/2)*(Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)]), Int[x^(m -
 q/2)*((A + B*x^(n - q))/Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]), x], x] /; FreeQ[{a, b, c, A, B, m, n, q}, x
] && EqQ[j, n - q] && EqQ[r, 2*n - q] && PosQ[n - q] && (EqQ[m, 1/2] || EqQ[m, -2^(-1)]) && EqQ[n, 3] && EqQ[q
, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}+\frac {1}{3} \int \frac {\sqrt {x} \left (2 a+b x^2\right )}{\sqrt {a x+b x^3+c x^5}} \, dx \\ & = \frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}+\frac {\left (\sqrt {x} \sqrt {a+b x^2+c x^4}\right ) \int \frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{3 \sqrt {a x+b x^3+c x^5}} \\ & = \frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}+\frac {\left (\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \sqrt {x} \sqrt {a+b x^2+c x^4}\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{3 \sqrt {a x+b x^3+c x^5}}-\frac {\left (\sqrt {a} b \sqrt {x} \sqrt {a+b x^2+c x^4}\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{3 \sqrt {c} \sqrt {a x+b x^3+c x^5}} \\ & = \frac {b x^{3/2} \left (a+b x^2+c x^4\right )}{3 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {a x+b x^3+c x^5}}+\frac {1}{3} \sqrt {x} \sqrt {a x+b x^3+c x^5}-\frac {\sqrt [4]{a} b \sqrt {x} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 c^{3/4} \sqrt {a x+b x^3+c x^5}}+\frac {\sqrt [4]{a} \left (b+2 \sqrt {a} \sqrt {c}\right ) \sqrt {x} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 c^{3/4} \sqrt {a x+b x^3+c x^5}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.64 (sec) , antiderivative size = 452, normalized size of antiderivative = 1.30 \[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\frac {\sqrt {x} \left (4 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \left (a+b x^2+c x^4\right )+i b \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )\right )}{12 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {x \left (a+b x^2+c x^4\right )}} \]

[In]

Integrate[Sqrt[a*x + b*x^3 + c*x^5]/Sqrt[x],x]

[Out]

(Sqrt[x]*(4*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(a + b*x^2 + c*x^4) + I*b*(-b + Sqrt[b^2 - 4*a*c])*Sqrt[(b + S
qrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2
- 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b
^2 - 4*a*c])] - I*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 -
4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[
c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])]))/(12*c*Sqrt[c/(b + Sqrt[b^2 -
 4*a*c])]*Sqrt[x*(a + b*x^2 + c*x^4)])

Maple [A] (verified)

Time = 1.51 (sec) , antiderivative size = 430, normalized size of antiderivative = 1.24

method result size
risch \(\frac {x^{\frac {3}{2}} \left (c \,x^{4}+b \,x^{2}+a \right )}{3 \sqrt {x \left (c \,x^{4}+b \,x^{2}+a \right )}}+\frac {\left (\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{6 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right ) \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {x}}{\sqrt {x \left (c \,x^{4}+b \,x^{2}+a \right )}}\) \(430\)
default \(\frac {\sqrt {x \left (c \,x^{4}+b \,x^{2}+a \right )}\, \left (\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {-4 a c +b^{2}}\, c \,x^{5}+\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, b c \,x^{5}+\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {-4 a c +b^{2}}\, b \,x^{3}+\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, b^{2} x^{3}+a \sqrt {-\frac {2 \left (\sqrt {-4 a c +b^{2}}\, x^{2}-b \,x^{2}-2 a \right )}{a}}\, \sqrt {\frac {\sqrt {-4 a c +b^{2}}\, x^{2}+b \,x^{2}+2 a}{a}}\, F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {2}\, \sqrt {\frac {b \sqrt {-4 a c +b^{2}}-2 a c +b^{2}}{a c}}}{2}\right ) \sqrt {-4 a c +b^{2}}+b a \sqrt {-\frac {2 \left (\sqrt {-4 a c +b^{2}}\, x^{2}-b \,x^{2}-2 a \right )}{a}}\, \sqrt {\frac {\sqrt {-4 a c +b^{2}}\, x^{2}+b \,x^{2}+2 a}{a}}\, E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {2}\, \sqrt {\frac {b \sqrt {-4 a c +b^{2}}-2 a c +b^{2}}{a c}}}{2}\right )+\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {-4 a c +b^{2}}\, a x +\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, a b x \right )}{3 \sqrt {x}\, \left (c \,x^{4}+b \,x^{2}+a \right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(508\)

[In]

int((c*x^5+b*x^3+a*x)^(1/2)/x^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*x^(3/2)*(c*x^4+b*x^2+a)/(x*(c*x^4+b*x^2+a))^(1/2)+(1/6*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-
b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/
2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/6*b*a*2^(1/2)/(
(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^
(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),
1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(
-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))*(c*x^4+b*x^2+a)^(1/2)*x^(1/2)/(x*(c*x^4+b*x^2+a))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.09 (sec) , antiderivative size = 314, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\frac {\sqrt {\frac {1}{2}} {\left (b c x^{2} \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b^{2} x^{2}\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} E(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left (b c - 2 \, c^{2}\right )} x^{2} \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - {\left (b^{2} + 2 \, b c\right )} x^{2}\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} F(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 2 \, \sqrt {c x^{5} + b x^{3} + a x} {\left (c^{2} x^{2} + b c\right )} \sqrt {x}}{6 \, c^{2} x^{2}} \]

[In]

integrate((c*x^5+b*x^3+a*x)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

1/6*(sqrt(1/2)*(b*c*x^2*sqrt((b^2 - 4*a*c)/c^2) - b^2*x^2)*sqrt(c)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)*ell
iptic_e(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*sqrt((b^2 - 4*a*c)/c^2) + b^2 -
2*a*c)/(a*c)) - sqrt(1/2)*((b*c - 2*c^2)*x^2*sqrt((b^2 - 4*a*c)/c^2) - (b^2 + 2*b*c)*x^2)*sqrt(c)*sqrt((c*sqrt
((b^2 - 4*a*c)/c^2) - b)/c)*elliptic_f(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*s
qrt((b^2 - 4*a*c)/c^2) + b^2 - 2*a*c)/(a*c)) + 2*sqrt(c*x^5 + b*x^3 + a*x)*(c^2*x^2 + b*c)*sqrt(x))/(c^2*x^2)

Sympy [F]

\[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\int \frac {\sqrt {x \left (a + b x^{2} + c x^{4}\right )}}{\sqrt {x}}\, dx \]

[In]

integrate((c*x**5+b*x**3+a*x)**(1/2)/x**(1/2),x)

[Out]

Integral(sqrt(x*(a + b*x**2 + c*x**4))/sqrt(x), x)

Maxima [F]

\[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\int { \frac {\sqrt {c x^{5} + b x^{3} + a x}}{\sqrt {x}} \,d x } \]

[In]

integrate((c*x^5+b*x^3+a*x)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^5 + b*x^3 + a*x)/sqrt(x), x)

Giac [F]

\[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\int { \frac {\sqrt {c x^{5} + b x^{3} + a x}}{\sqrt {x}} \,d x } \]

[In]

integrate((c*x^5+b*x^3+a*x)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^5 + b*x^3 + a*x)/sqrt(x), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a x+b x^3+c x^5}}{\sqrt {x}} \, dx=\int \frac {\sqrt {c\,x^5+b\,x^3+a\,x}}{\sqrt {x}} \,d x \]

[In]

int((a*x + b*x^3 + c*x^5)^(1/2)/x^(1/2),x)

[Out]

int((a*x + b*x^3 + c*x^5)^(1/2)/x^(1/2), x)